墨坛书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

林枫当然知道,自己正在改变世界。

甚至于一开始林枫也有点激动。

不过很快林枫也就恢复平常心了。

因为较真地讲,从林枫重生的第一天开始,林枫就已经在改变着世界了。

因为林枫的到来,这个世界正在一点点地变成林枫的形状。

因此对于马库斯的恭维,林枫只是笑了笑。

“对了,你们还可以关注一下另一件事。”林枫突然说道,“关于网络中的‘注意力机制’你们也可以注意一下,它在未来会在很多领域展现出惊人的威力,尤其是在自然语言处理(NLp)方面。这种机制能让网络更聪明地选择重点关注哪些输入信息,而不是一视同仁地对所有输入进行处理。”

“注意力机制?”马库斯更迷茫了,自然语言处理虽然在2014年也是热门研究方向,但“注意力”这个词在他的印象里一片空白,显然这个还没被用到深度学习领域。

马库斯显然意识到,今天这场对话比他预想的更具启发性。

林枫不经意间的一些观点,很有可能给深度学习领域带来革命性突破。

马库斯此刻觉得他仿佛正在见证一些颠覆性理念的诞生。

他不禁有些激动,忍不住追问道:“林,你刚刚提到的‘注意力机制’……你能多说点吗?你知道,现在的神经网络普遍都是在处理图像、视频数据等结构化信息,但语言这类非结构化数据一直是个棘手的领域。你提到的这个‘注意力’机制,真的能大幅提升自然语言处理的能力?”

林枫笑了笑,心里明白马库斯现在的困惑。

2014年这个时间点上,自然语言处理领域确实还没有完全进入“注意力机制”主导的时代,许多人依旧在用传统的RNN和LStm(长短期记忆网络)来处理时间序列数据,语言模型的效果虽有进步,但远未达到后来transformer带来的质变。

林枫深吸一口气,试图在不暴露太多未来科技的前提下,用马库斯能理解的方式解释:“你可以把‘注意力机制’想象成一种更聪明的权重分配系统。当你阅读一篇文章的时候,人的大脑并不会对每个单词都投入相同的注意力,某些词或句子对理解整个文章的意义更为关键。‘注意力机制’的核心思想就是类似的,它让网络学会‘关注’输入信息中的重要部分,而不是每个部分都平等对待。”

马库斯眉头微蹙,似懂非懂。

林枫也没有催促,姑且留待马库斯思考。

过了一会,马库斯若有所得,但依然还是有困惑,马库斯问道:“这跟我们现在使用的网络结构有什么本质区别呢?毕竟网络权重也是在调整不同的输入节点,按理说它也能‘选择性地关注’重要的信息。”

林枫点了点头,继续解释道:“是的,当前的网络权重确实会根据数据自动调整,但问题在于它们的调整方式太过机械。

网络层层堆叠后,很容易出现‘信息稀释’的现象,尤其是在处理长序列数据时,早期输入的信息可能会在网络的深层逐渐被削弱,甚至丢失。而‘注意力机制’则不同,它会在每一步都重新评估所有输入的影响力,并动态调整每个输入的权重,保证关键的信息不会因为层数的增加而被遗忘。”

马库斯若有所思地反复琢磨着林枫的话:“动态调整……你的意思是说像是一个随时监控并修正网络学习方向的系统?”

“可以这么理解,”林枫笑了笑,“尤其是在处理自然语言时,你会发现信息的相关性是动态变化的。句子开头的某个词,可能会对后面一句话的解释至关重要,甚至决定整段话的含义。

这个时候我们就需要引入注意力机制了,如果没有这种‘注意力机制’,网络可能很难处理这种长距离依赖。”

“长距离依赖……”

马库斯嘴里嘟囔着,心中反复琢磨。

良久,眼中闪过一丝明悟。

在人工智能的自然语言处理中的确有这种问题,网络在处理长文本时常常会因为距离太远而丢失关键信息。这也是为什么传统的RNN和LStm虽然能解决一部分问题,但它们的记忆能力仍然有限,尤其在处理长文本或复杂句子时,模型的性能往往不尽如人意。

林枫看到马库斯的反应,知道他已经触摸到一些未来即将到来的人工智能变革的端倪,便稍稍放缓了语气:“我倒是觉得你们可以考虑在网络中引入‘自注意力机制’,让每个输入节点与其他所有节点进行互动,通过这种机制,网络可以自适应地识别哪些输入对当前的输出更重要。这种方式能够极大提升模型对长文本的处理能力,也会使训练更有效率。”

“自注意力机制?”马库斯低声重复着这个陌生的术语。

林枫点头:“是的,等你们进一步研究这个方向时,会发现它不仅适用于自然语言处理,甚至可以扩展到其他领域,比如图像处理、视频分析等。这种机制将改变网络处理复杂数据的方式,使得信息处理更精准,学习过程更稳定。”

马库斯的思绪被彻底激发了。他看着林枫,忍不住感慨道:“你这些想法……感觉远远超出了我目前的理解范围,甚至我感觉这些思路已经超出很多传统的共识了。

我们一直在深度学习的框架内打转,却没想到可以有这么多突破性的新思路。

真没想到你对人工智能居然也有这么深厚的造诣?”

林枫反问:“这算很深的造诣吗?这些不是很简单吗?”

林枫还真不是装逼。

就林枫从事的这些换做是后世一个普通的人工智能从业者也能说出个大概。

虽然说起来挺复杂,但本质上是因为林枫也不是专业讲师。

有些事情,心里是明白的,具体也是懂的。

但想要做到深入浅出那肯定是有难度。

因此也就是听起来依然还是有点抽象。

不过客观来讲,确实也不怎么难。

墨坛书屋推荐阅读:一世倾城(邪王追妻:废材逆天小姐)全民,开局漫游枪手,BOSS直岳风柳萱小说免费阅读丑女种田:山里汉宠妻无度光灵行传婚情不负:腹黑总裁恋逃妻宠妻入骨:神秘老公有点坏兵王传奇医武兵王陆轩重生空间之少将仙妻你是我的难得情深不是戏神从明星野外生存秀开始龙王劫,盛宠逆天商妃穿成反派BOSS的小娇妻农女致富记走出深渊,我即是深渊都市小保安战神医婿江辰唐楚楚全集免费阅读下载弃女重生:神医太子妃乾坤剑神我们的少年时代:2四合院:不要算计我红包游戏:我提现了商业帝国医术助我拿下狂傲夫君重生另嫁小叔,夫妻联手虐渣不死武皇一世倾城直播:在线放牧,我有万亩草原最豪赘婿高端食材供应商这重生不太对劲华娱:从跑男开始出发!美食:随机摆摊,顾客疯狂抢购江湖话事人庞医生的小嗲精重生80年代好日子岳风柳萱免费阅读大结局开局主角上门?我成他姐夫!化身系统,宿主莫慌,我来了!炼狱孤行者高武:开局修改锻体法震惊世界我演化的物种,都叫我创世神道士不好惹(又名:古井观传奇)神级逗比系统温水煮沫沫慕林灰雾灭世,我是行走吸尘器糟糕!假死脱身后被女主逮住了奉旨抢亲,纨绔太子喜当娘
墨坛书屋搜藏榜:锦云谋票房女王安哥拉风云2009龙虎香江亲手亲嘴把十八线小明星养成天后诸天猎杀者看到成功率,我被相亲对象绑架了校园绝品医王重生之一路随心隐婚总裁的小祖宗甜哭了婚约对象是七位师姐,我要退婚!神医龙婿绝地大探险第一符师:轻狂太子妃解甲归甜(重生)怀孕后,前任小叔找上门要负责东宫禁宠带着空间当熊猫米豆和他的体验屋超级军工霸主系统绑错,我躺赢成仙田园神豪苟在都市修个仙四合院里的喜剧重生八零之军少的毒妻惊!王妃一脚踹翻了王爷的轮椅天生媒运华娱从仙剑开始曹军打赏女主播,我能无限提升修为我有一个万能系统商城都市:霸道总裁爱上我郡主当道:美男有点多闪婚之秘爱成瘾都市至尊医仙七零,恶毒女配奋斗日常私宠:婚前试爱神临觉醒:我成为异世五条悟森罗大帝最强狂兵山晋江湖,我全家都是黑道系统让我当贤妻良母龙族之从挖卡塞尔墙角开始重启白金时代重生为君我的灵器被妹妹直播抽奖了夫人虐渣要趁早全书反派都宠她爱上秦楼重生八零奶萌包占卜师:基础能力干翻全世界
墨坛书屋最新小说:被夺身份后我继承了修真界挖遍全球宝女总裁爱上穷小子,男老师爽翻了开局女友提分手,我转身攻略清纯校花人在民国当县长:我成了列强?全球战车:武魂百吨王大车吃小车一个退伍老兵的另类江湖陷入羞萝场的病弱小萝莉愈发长命机械师烧钱?幸好校花重金求子他大一新生,徒手接核弹合理吗?都市异能赏金猎人御兽:我瞎编技能,却教出了神兽乡野山村逍遥小神医天生烂桃花,开局遇到海后学姐人生若大梦中奖一个亿后,我成了公司救世主生日晚宴你失约,我娶学妹你发癫黑道风云之东南风云录!我掌握外星科技超越地球神豪:散财主播,全网美女求连线我和僵尸有个约会我的年少轻狂离婚后,她们都想撩我结婚我的朋友是神仙黄袍加身,我靠外卖系统笑疯全网重生成狗,你跑去吞噬怪物?重生秒赚百万,我把妻女宠上天!女帝竟是我电子女友麒麟苍穹:命运之轮我的毕业旅行:意外捡到个逃跑的女明星觉醒了虫族系统,被迫当大反派1968:刚娶女知青,你让我老登逆袭?枫月双刃重生当作曲人的我,横扫榜单!戈壁鱼猎:捡个旺夫女知青当老婆重返88,白眼狼前妻悔哭了!离婚后,我震惊娱乐圈,你哭啥?爷爷是魔修,我却在都市斩妖除魔凶案没目击者?那这些动物是什么完蛋!清冷女总裁对我一见钟情了重生82:断绝关系后我捡漏将门娇妻替身三年,我转身拿下千亿女总裁被班花绿了之后,校花女神为我痴狂山野小神医的神秘使命我的卧底生涯重生:枪断万古,我为人族挽天倾成为首富,从老妈闺蜜开始重回09:不贷款你们真以为我没钱?入夜就变强,我的天赋无限进化重生79:离婚后,我成了大文豪高武:外甥女被欺负,8岁的我堵校门!