墨坛书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

应该说,微分和积分为什么互为逆运算,而且为什么通过反求导就能求出区域面积,这大概是在学习微积分的时候,很多人最难理解的一个点。

甚至曾经在很早之前,大家都把微分和积分看作是两个互不关联,毫不相关的东西去看待,直到后面出现了牛顿和莱布尼茨。

考虑到证明的过程是很难直观去理解的,所以李纵才举了这么一个或许并不太严谨,但却意外好懂的例子,把求积分的图,当成是瞬间速度变化的图。

然后求从a到b时间之内,到底走过了多少路程,这是不是就是反求导之后,用大写的F代表原函数,黄色区域的面积就等于F(b)-F(a)。

这正是计算积分十分重要的一个公式,将连续的需要求和的一条条铅垂线的过程,转变成了只需要代入边界的值,一减就能求出面积。

见两人还在犹豫,李纵也是把路程等于速度乘以时间,面积等于底边乘以高,两者都是乘法的这么一个过程写了出来,道:“其实我们不必纠结于为什么路程可以看成是面积。”

“我们只需要知道他们都同样是乘法运算,而且,都是函数关于一滴滴的单位之内,会得到某个值就行了。”

“而且,如果反过来理解,求积分的这个图,用微分去表述,就可以是,在一滴滴的时间之内,面积的变化率。”

见两人还在沉思,李纵便继续道:“那么,假设这种想法是对的,我们已经得知,这两种运算存在着一种互逆的关系,那么,我们可以怎么使用这种关系?”

“是不是就可以求积分了,积分原本是要把很多很多的铅垂线的面积加起来,正常来说,我们人是办不到的,但是如果能把它转换为微分时的原函数,积分是不是就可以计算了。”

“直接代入两个边界的点,一减,答案不就出来了。b点的里程,比如说15里,减去a点的里程,比如说10里,一减,中间的5里,就是我们走过的路程。”

“那么问题来了!这个积分的函数,跟它微分时的原函数,到底存在着一种什么样的关系。”

“或者说,我现在已经知道了积分的函数了,就是等于y=2x,那么,微分时的原函数,是什么?所以是不是就是一次从微分的结果,反推微分的开头的这么一个过程。”

“那接下来我们便尝试着拿一个例子,来求一次微分。”

“比如说原函数y=x2,根据刚刚微分的定义,是不是就可以有以下这个式子:”

图。

“此式子怎么理解,刚刚我们是用t-a的方式,但这样显然是算不出来的,所以我们把t换成x+Δx,代表t比a多了那么一滴滴增量,但是这个增量又是无限小,我们定义无限小不等于0,但是它无限趋近于0。”

“接下来便可以对式子进行运算。”

图。

“正如同前面我们说让t就是等于a,那么很短很短的时间,也就没有争议。这个的Δx,我们把他视为是没有增量,那么这条式子最后,微分出来,等于2x也就没有争议了。”

“当然,前提是,我们定义了无限小,是趋向于0。”

“这正好就是微分的结果跟原函数。”

“接下来,我们可以代入一些数字来测试一下。”

“首先明确,y=x2是路程关于时间的函数,y=2x是路程变化率,也就是速度关于时间的函数。”

“现在我要求y=2x在某一段时间内走过的路程,即这个函数在给定边界范围的面积。”

“就可以变成求出原函数,然后代入边界,最后y=12=1。”

“而反应在y=2x的这个与x、y边界所围成的面积,是不是也是,按照三角形的面积公式,底是1,高是2,1×2÷2=1,也等于1。”

“再代入别的数字,x=2,原函数答案是4,y=2x围成的面积是,2×4÷2=4,也等于4。”

“下面的以此类推,答案完全一样。”

“甚至就是算梯形的面积,其实也是一样的。”

李纵用一个很巧合的例子,来说明在给定边界后,的确可以通过原函数的式子来算出图形的面积。并且计算出来的面积是完全吻合的,这恰恰印证了前面李纵的假设。

虽说这只是个例,但是,此法足以让两人耳目一新。

三角形的面积原来还能这么算,这谁能想到!

然后李纵便道:“其实还有更为严格的证明过程,只是便于你们好理解,我也就拿这个作为例子。”

“假设这就是对的!”

“那么,以前我们是不是写了一条关于圆的方程的式子,是不是也有xy,而且当时我们还算出了边界,如果我没有记错的话,是b点的坐标是四分之一。”

“要是我们也能知道那条圆的方程的式子的原函数,是不是就能够通过直接代入四分之一,当然,起点是0,所以不用算,去算那个小区域S(ABD)的面积。”

两人听完,简直觉得李纵就是鬼才!

这都能让李纵想到!

但是……

接下来,等李纵把圆的方程式子写下来后,这个要怎么求原函数,却是把所有人都难倒了。

“这个式子,要怎么求原函数。”

“方才,我们是瞎猫碰上死耗子,正好通过微分,算出来是2x,那么接下来什么原函数的微分等于(x-x2),再开根号。”

张公绰两人立刻都傻眼了。

甚至,看完了这条式子,前面什么微分、积分好像都忘了,这就是所谓的,你看完,你觉得你自己懂了,其实,你什么都不懂。(图)

“这的确是一条相当复杂的式子,而且微分的过程虽说我们从头到尾都是知道的,但是我们却又不可能从后面往前推。”

“尤其还是这种又有减法,甚至还有开平方的式子。”

“这怎么办?”

“我们化简一下。”

“这就是结果。”

“然后我们先不管前面的x的二分之一方,我们就看后面的这个,(1-x)的二分之一方,是不是就跟我们之前提到的,那个f(m)的公式长得很像。”

“那我们是不是就可以把这个式子,按照f(m)的式子来展开。”

“最后得到。”

“我们再对这个式子求原函数。”

墨坛书屋推荐阅读:一世倾城(邪王追妻:废材逆天小姐)全民,开局漫游枪手,BOSS直岳风柳萱小说免费阅读丑女种田:山里汉宠妻无度光灵行传婚情不负:腹黑总裁恋逃妻宠妻入骨:神秘老公有点坏兵王传奇医武兵王陆轩重生空间之少将仙妻你是我的难得情深不是戏神从明星野外生存秀开始龙王劫,盛宠逆天商妃穿成反派BOSS的小娇妻农女致富记走出深渊,我即是深渊都市小保安战神医婿江辰唐楚楚全集免费阅读下载弃女重生:神医太子妃乾坤剑神我们的少年时代:2四合院:不要算计我红包游戏:我提现了商业帝国医术助我拿下狂傲夫君重生另嫁小叔,夫妻联手虐渣不死武皇一世倾城直播:在线放牧,我有万亩草原最豪赘婿高端食材供应商这重生不太对劲华娱:从跑男开始出发!美食:随机摆摊,顾客疯狂抢购江湖话事人庞医生的小嗲精重生80年代好日子岳风柳萱免费阅读大结局开局主角上门?我成他姐夫!化身系统,宿主莫慌,我来了!炼狱孤行者高武:开局修改锻体法震惊世界我演化的物种,都叫我创世神道士不好惹(又名:古井观传奇)神级逗比系统温水煮沫沫慕林灰雾灭世,我是行走吸尘器糟糕!假死脱身后被女主逮住了奉旨抢亲,纨绔太子喜当娘
墨坛书屋搜藏榜:锦云谋票房女王安哥拉风云2009龙虎香江亲手亲嘴把十八线小明星养成天后诸天猎杀者看到成功率,我被相亲对象绑架了校园绝品医王重生之一路随心隐婚总裁的小祖宗甜哭了婚约对象是七位师姐,我要退婚!神医龙婿绝地大探险第一符师:轻狂太子妃解甲归甜(重生)怀孕后,前任小叔找上门要负责东宫禁宠带着空间当熊猫米豆和他的体验屋超级军工霸主系统绑错,我躺赢成仙田园神豪苟在都市修个仙四合院里的喜剧重生八零之军少的毒妻惊!王妃一脚踹翻了王爷的轮椅天生媒运华娱从仙剑开始曹军打赏女主播,我能无限提升修为我有一个万能系统商城都市:霸道总裁爱上我郡主当道:美男有点多闪婚之秘爱成瘾都市至尊医仙七零,恶毒女配奋斗日常私宠:婚前试爱神临觉醒:我成为异世五条悟森罗大帝最强狂兵山晋江湖,我全家都是黑道系统让我当贤妻良母龙族之从挖卡塞尔墙角开始重启白金时代重生为君我的灵器被妹妹直播抽奖了夫人虐渣要趁早全书反派都宠她爱上秦楼重生八零奶萌包占卜师:基础能力干翻全世界
墨坛书屋最新小说:出马先锋密录都市神探:我能看透罪恶1981小渔村,从赶海买船开始重生1977:从黄泥河猎狼开始出门相个亲,结果相到了黑道千金分手后,一首偏爱火爆全网谁规定剑仙就不能搞笑?村之恋再见时你是高冷校花我是军训教官赵二虎的逆袭人生什么叫我不是舔狗,你是我老婆?万火至尊跟着番茄学物理荒岛求生:我是特种兵痴情富豪重生1975:我靠渔猎让妻子吃香喝辣夜宿孤棺,高冷女鬼崩溃求我别死伏地魔害我惨死?重生后我娶青梅杀疯了不当舔狗后,她哭着跪求我回来华娱:贴脸开大,众导演集体破防穿梭阴阳界,御鬼获得无限寿元星铠之我的日常生活吞噬星轨变强从被绿开始七十二蛊我在千年苗寨风生水起御兽:让你御兽,没让你御女啊让你唱红歌,你开舰载机干航母女总裁的顶级狂婿御兽:欺我母弱?我自化天灾!女尊:我和我的大只老婆日常职业淘金客:凭啥你日入两三万?关于觉醒最牛职业却无人知晓这事重生1977,我竟成了家中独棍都市之我是兵王龙城归来之风云将起史上最强符箓师全民转职:开局觉醒反社畜技能说好职业技术学院,你竟然教人修仙?重生七百年,从舔狗到仙尊大佬虚无,中二病的终极幻想诡异复苏?我先卖个淋巴肉包子!抗战:开局凌波微步,杀疯了!墟火外卖录都市异能之旅念力师:我的精神数值无限大至尊仙帝归来官路之问鼎权力巅峰!重生1979:我赶山打猎带全家吃肉往返80东北,我靠赶山财富自由重生90靠麻辣烫发家